Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence

نویسندگان

  • Liang Yan
  • Xiaojun Duan
  • Bowen Liu
  • Jin Xu
چکیده

In this paper, we examine two widely-used approaches, the polynomial chaos expansion (PCE) and Gaussian process (GP) regression, for the development of surrogate models. The theoretical differences between the PCE and GP approximations are discussed. A state-of-the-art PCE approach is constructed based on high precision quadrature points; however, the need for truncation may result in potential precision loss; the GP approach performs well on small datasets and allows a fine and precise trade-off between fitting the data and smoothing, but its overall performance depends largely on the training dataset. The reproducing kernel Hilbert space (RKHS) and Mercer’s theorem are introduced to form a linkage between the two methods. The theorem has proven that the two surrogates can be embedded in two isomorphic RKHS, by which we propose a novel method named Gaussian process on polynomial chaos basis (GPCB) that incorporates the PCE and GP. A theoretical comparison is made between the PCE and GPCB with the help of the Kullback–Leibler divergence. We present that the GPCB is as stable and accurate as the PCE method. Furthermore, the GPCB is a one-step Bayesian method that chooses the best subset of RKHS in which the true function should lie, while the PCE method requires an adaptive procedure. Simulations of 1D and 2D benchmark functions show that GPCB outperforms both the PCE and classical GP methods. In order to solve high dimensional problems, a random sample scheme with a constructive design (i.e., tensor product of quadrature points) is proposed to generate a valid training dataset for the GPCB method. This approach utilizes the nature of the high numerical accuracy underlying the quadrature points while ensuring the computational feasibility. Finally, the experimental results show that our sample strategy has a higher accuracy than classical experimental designs; meanwhile, it is suitable for solving high dimensional problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

The Nonlinear Gaussian Spectrum of Log-normal Stochastic Processes and Variables

A procedure is presented in this paper for developing a representation of lognormal stochastic processes via the polynomial chaos expansion. These are processes obtained by applying the exponential operator to a gaussian process. The Polynomial Chaos expansion results in a representation of a stochastic process in terms of mul-tidimensional polynomials orthogonal with respect to the Gaussian me...

متن کامل

Additive Approximations in High Dimensional Nonparametric Regression via the SALSA

High dimensional nonparametric regression is an inherently difficult problem with known lower bounds depending exponentially in dimension. A popular strategy to alleviate this curse of dimensionality has been to use additive models of first order, which model the regression function as a sum of independent functions on each dimension. Though useful in controlling the variance of the estimate, s...

متن کامل

A Generalized Polynomial Chaos - Based Method for Efficient Bayesian Calibration of Uncertain Computational Models

This paper addresses the Bayesian calibration of dynamic models with parametric and structural uncertainties, in particular where the uncertain parameters are unknown/poorly known spatio-temporally varying subsystem models. Independent stationary Gaussian processes with uncertain hyper-parameters describe uncertainties of the model structure and parameters while Karhunnen-Loeve expansion is ado...

متن کامل

Simulation of stochastic quantum systems using polynomial chaos expansions.

We present an approach to the simulation of quantum systems driven by classical stochastic processes that is based on the polynomial chaos expansion, a well-known technique in the field of uncertainty quantification. The polynomial chaos technique represents the density matrix as an expansion in orthogonal polynomials over the principle components of the stochastic process and yields a sparsely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018